Download Ley de Ohm - Google Sites

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Ley de Ohm wikipedia, lookup

Vatímetro wikipedia, lookup

Fuente eléctrica wikipedia, lookup

Resistencia negativa wikipedia, lookup

Fuente de alimentación wikipedia, lookup

Transcript
Ley de Ohm
Circuito mostrando la Ley de Ohm: Una fuente de energía eléctrica. V, produce
una corriente eléctrica I cuando pasa a través de la resistencia R
La Ley de Ohm establece que "la intensidad de la corriente eléctrica que circula
por un conductor eléctrico es directamente proporcional a la diferencia de
potencial aplicada e inversamente proporcional a la resistencia del mismo", se
puede expresar matemáticamente en la siguiente ecuación:
Donde, empleando unidades del Sistema internacional, tenemos que:



I = Intensidad en amperios (A)
V = Diferencia de potencial en voltios (V) ó (U)
R = Resistencia en ohmios (Ω).
Esta ley no se cumple, por ejemplo, cuando la resistencia del conductor varía con
la temperatura, y la temperatura del conductor depende de la intensidad de
corriente y el tiempo que esté circulando.
La ley define una propiedad específica de ciertos materiales por la que se cumple
la relación:
Un conductor cumple la Ley de Ohm sólo si su curva V-I es lineal, esto es si R es
independiente de V y de I.

Enunciado
En un conductor recorrido por una corriente eléctrica, el cociente entre la
diferencia de potencial aplicada a los extremos del conductor y la intensidad de la
corriente que por él circula es una cantidad constante, que depende del conductor.
A esta cantidad se le denomina resistencia.
La ley enunciada verifica la relación entre voltaje de la red y corriente en un
resistor.
Historia
Como resultado de su investigación, en la que experimentaba con materiales
conductores, el científico alemán Georg Simón Ohm llegó a determinar que la
relación entre voltaje y corriente era constante y nombró a esta constante
resistencia.
Esta ley fue formulada por Georg Simón Ohm en 1827, en la obra Die galvanische
Kette, mathematisch bearbeitet (Trabajos matemáticos sobre los circuitos
eléctricos), basándose en evidencias empíricas. La formulación original es:
Siendo la densidad de la corriente, σ la conductividad eléctrica y el campo
eléctrico, sin embargo se suele emplear las fórmulas simplificadas anteriores para
el análisis de los circuitos.
Deducción
Esquema de un conductor cilíndrico donde se muestra la aplicación de la Ley de
Ohm.
Como ya se destacó anteriormente, las evidencias empíricas mostraban que
(vector densidad de corriente) es directamente proporcional a
(vector campo
eléctrico). Para escribir ésta relación en forma de ecuación es necesario añadir
una constante arbitraria, que posteriormente se llamó factor de conductividad
eléctrica y que representaremos como σ. Entonces:
El vector
es el vector resultante de los campos que actúan en la sección de
alambre que se va a analizar, es decir, del campo producido por la carga del
alambre en sí y del campo externo, producido por una batería, una pila u otra
fuente de fem. Por lo tanto:
Ahora, sabemos que
, donde
es un vector unitario de dirección, con lo
cual reemplazamos y multiplicamos toda la ecuación por un
:
Los vectores y
poseen la misma dirección y sentido, con lo cual su producto
escalar puede expresarse como el producto de sus magnitudes por el coseno del
ángulo formado entre ellos. Es decir:
Por lo tanto, se hace la sustitución:
Integrando ambos miembros en la longitud del conductor:
El miembro derecho representa el trabajo total de los campos que actúan en la
sección de alambre que se está analizando, y de cada integral resulta:
Y
Donde φ1 − φ2 representa la diferencia de potencial entre los puntos 1 y 2, y ξ
representa la fem; por tanto, podemos escribir:
Donde U12 representa la caída de potencial entre los puntos 1 y 2.
Como dijimos anteriormente, σ representa la conductividad, por lo que su inversa
representará la resistividad y la representaremos como ρ. Así:
Finalmente, la expresión
es lo que se conoce como resistencia eléctrica
Por tanto, podemos escribir la expresión final como lo dice abajo:
Símil hidráulico
En hidráulica se verifica una ley similar a la Ley de Ohm, que puede facilitar su
comprensión. Si tenemos un fluido dentro de un tubo, la diferencia de presiones
entre sus extremos equivale a la diferencia de potencial o tensión; el caudal a
través del conducto equivale a la intensidad de la corriente eléctrica; y la suma de
obstáculos que impiden la corriente del fluido equivale a la resistencia eléctrica.
Potencia eléctrica
La potencia eléctrica se transmite por líneas sobre torres, como éstas en Brisbane,
Australia.
La potencia eléctrica es la relación de transferencia de energía por unidad de
tiempo; es decir, la cantidad de energía entregada o absorbida por un elemento en
un tiempo determinado (p = dW / dt). La unidad en el Sistema Internacional de
Unidades es el Vatio.
Cuando una corriente eléctrica fluye en un circuito, puede transferir energía al
hacer un trabajo mecánico o termodinámico. Los dispositivos convierten la energía
eléctrica de muchas maneras útiles, como calor, luz (lámpara incandescente),
movimiento (motor eléctrico), sonido (altavoz) o procesos químicos. La electricidad
se puede producir mecánicamente o químicamente por la generación de energía
eléctrica, o también por la transformación de la luz en las celulas fotoeléctricas.
Por último, se puede almacenar químicamente en baterías.

Potencia en corriente continua
Cuando se trata de corriente continua (CC) la potencia eléctrica desarrollada en un
cierto instante por un dispositivo de dos terminales, es el producto de la diferencia
de potencial entre dichos terminales y la intensidad de corriente que pasa a través
del dispositivo. Por esta razón la potencia es proporcional a la corriente y a la
tensión. Esto es,
(1)
Donde I es el valor instantáneo de la corriente y V es el valor instantáneo del
voltaje. Si I se expresa en amperios y V en voltios, P estará expresada en watts
(vatios). Igual definición se aplica cuando se consideran valores promedio para I, V
y P.
Cuando el dispositivo es una resistencia de valor R o se puede calcular la
resistencia equivalente del dispositivo, la potencia también puede calcularse como
Potencia en corriente alterna
Cuando se trata de corriente alterna (AC) sinusoidal, el promedio de potencia
eléctrica desarrollada por un dispositivo de dos terminales es una función de los
valores eficaces o valores cuadráticos medios, de la diferencia de potencial entre
los terminales y de la intensidad de corriente que pasa a través del dispositivo.
En el caso de un circuito de carácter inductivo (caso más común) al que se aplica
una tensión sinusoidal
con velocidad angular
Esto provocará una corriente
aplicada:
y valor de pico
retrasada un ángulo
resulta:
respecto de la tensión
La potencia instantánea vendrá dada como el producto de las expresiones
anteriores:
Mediante trigonometría, la anterior expresión puede transformarse en la siguiente:
Y sustituyendo los valores de pico por los eficaces:
Se obtiene así para la potencia un valor constante,
y otro variable con
el tiempo,
. Al primer valor se le denomina potencia activa y al
segundo potencia fluctuante.
Potencia fluctuante
Al ser la potencia fluctuante de forma senoidal, su valor medio será cero. Para
entender mejor qué es la potencia fluctuante, imaginemos un circuito que sólo
tuviera una potencia de este tipo. Ello sólo es posible si
(cos(±90º)=0), quedando
rad
caso que corresponde a un circuito inductivo puro o capacitivo puro. Por lo tanto la
potencia fluctuante es debida a un solenoide o a un condensador. Tales elementos
no consumen energía sino que la almacenan en forma de campo magnético y
campo eléctrico.
Componentes de la intensidad
Figura 1.- Componentes activa y reactiva de la intensidad; supuestos inductivos,
izquierdos y capacitivos, derecha.
Consideremos un circuito de C. A. en el que la corriente y la tensión tienen un
desfase φ. Se define componente activa de la intensidad, Ia, a la componente de
ésta que está en fase con la tensión, y componente reactiva, Ir, a la que está en
cuadratura con ella (véase Figura 1). Sus valores son:
El producto de la intensidad, I, y las de sus componentes activa, Ia, reactiva, Ir, por
la tensión, V, da como resultado las potencias aparente (S), activa (P) y reactiva
(Q), respectivamente:
Potencia compleja
Figura 2.- Relación entre potencia activa, aparente y reactiva.
La potencia compleja (cuya magnitud se conoce como potencia aparente) de un
circuito eléctrico de corriente alterna, es la suma (vectorial) de la potencia que
disipa dicho circuito y se transforma en calor o trabajo(conocida como potencia
promedio, activa o real) y la potencia utilizada para la formación de los campos
eléctrico y magnético de sus componentes que fluctuará entre estos componentes
y la fuente de energía (conocida como potencia reactiva).
Esta potencia no es la realmente "útil", salvo cuando el factor de potencia es la
unidad (cos φ=1), y señala que la red de alimentación de un circuito no sólo ha de
satisfacer la energía consumida por los elementos resistivos, sino que también ha
de contarse con la que van a "almacenar" las bobinas y condensadores. Se la
designa con la letra S y se mide en voltamperios (VA) (la potencia activa se mide
en vatios (W), y la reactiva se mide en voltamperios reactivos (VAR)
La fórmula de la potencia aparente es:
Potencia activa
Es la potencia que representa la capacidad de un circuito para realizar un proceso
de transformación de la energía eléctrica en trabajo. Los diferentes dispositivos
eléctricos existentes convierten la energía eléctrica en otras formas de energía
tales como: mecánica, lumínica, térmica, química, etc. Esta potencia es, por lo
tanto, la realmente consumida por los circuitos. Cuando se habla de demanda
eléctrica, es esta potencia la que se utiliza para determinar dicha demanda.
Se designa con la letra P y se mide en vatios (W). De acuerdo con su expresión, la
ley de Ohm y el triángulo de impedancias:
Resultado que indica que la potencia activa es debido a los elementos resistivos.
Potencia reactiva
Esta potencia no tiene tampoco el carácter realmente de ser consumida y sólo
aparecerá cuando existan bobinas o condensadores en los circuitos. La potencia
reactiva tiene un valor medio nulo, por lo que no produce trabajo necesario. Por
ello que se dice que es una potencia devastada (no produce vatios), se mide en
voltamperios reactivos (VAR) y se designa con la letra Q.
A partir de su expresión,
Lo que reafirma en que esta potencia es debida únicamente a los elementos
reactivos.
Potencia trifásica
La representación matemática de la potencia activa en un sistema trifásico
equilibrado está dada por la ecuación:
Circuito en serie
Un circuito en serie es una configuración de conexión en la que los bornes o
terminales de los dispositivos (generadores, resistencias, condensadores,
interruptores, entre otros.) se conectan secuencialmente. La terminal de salida de
un dispositivo se conecta a la terminal de entrada del dispositivo siguiente.
Siguiendo un símil hidráulico, dos depósitos de agua se conectarán en serie si la
salida del primero se conecta a la entrada del segundo. Una batería eléctrica suele
estar formada por varias pilas eléctricas conectadas en serie, para alcanzar así el
voltaje que se precise.
En función de los dispositivos conectados en serie, el valor total o equivalente se
obtiene con las siguientes expresiones:

Para generadores

Para Resistencias

Para Condensadores

Para Interruptores
Interrupto
r1
Abierto
Abierto
Cerrado
Interrupto
r2
Abierto
Cerrado
Abierto
Cerrado
Cerrado
Salida
Abierto
Abierto
Abierto
Cerrad
o
Otra configuración posible, para la disposición de componentes eléctricos, es el
circuito en paralelo. En el cual, los valores equivalentes se calculan de forma
inversa al circuito en serie.
Circuito en paralelo
l circuito en paralelo es una conexión donde los bornes o terminales de entrada
de todos los dispositivos (generadores, resistencias, condensadores, etc.)
conectados coincidan entre sí, lo mismo que sus terminales de salida.
Siguiendo un símil hidráulico, dos tinacos de agua conectados en paralelo tendrán
una entrada común que alimentará simultáneamente a ambos, así como una
salida común que drenará a ambos a la vez. Las bombillas de iluminación de una
casa forman un circuito en paralelo.
En función de los dispositivos conectados en paralelo, el valor total o equivalente
se obtiene con las siguientes expresiones:

Para generadores

Para Resistencias

Para Condensadores

Para Interruptores
Interrupto Interrupto
Salida
r1
r2
Abierto
Abierto
Abierto
Cerrad
Abierto
Cerrado
o
Cerrad
Cerrado Abierto
o
Cerrad
Cerrado Cerrado
o
Otra configuración posible, para la disposición de componentes eléctricos, es el
circuito en serie. En el cual, los valores equivalentes se calculan de forma inversa
al circuito paralelo.