Download presentación - Vicens Vives

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Parámetro estadístico wikipedia, lookup

Medidas de dispersión wikipedia, lookup

Regresión lineal wikipedia, lookup

Covarianza wikipedia, lookup

Propagación de errores wikipedia, lookup

Transcript
11
OBJETIVOS
DIDÁCTICOS
ESTADÍSTICA BIDIMENSIONAL
– Conocer los parámetros estadísticos más usuales de las distribuciones unidimensionales: media, varianza y desviación típica.
– Reconocer los conceptos de variable estadística bidimensional y distribución bidimensional.
– Construir tablas simples y tablas de doble entrada para representar los datos de una
distribución estadística bidimensional.
– Interpretar y clasificar diferentes tipos de diagramas de dispersión según el grado de
dependencia.
– Analizar la correlación lineal de una distribución bidimensional indicando si es positiva
o negativa y si es fuerte o débil.
– Determinar el centro de gravedad y la covarianza de una distribución estadística bidimensional.
– Calcular el coeficiente de correlación lineal de Pearson para estudiar la dependencia
entre dos variables.
– Obtener las rectas de regresión que mejor se ajustan a la nube de puntos de una distribución bidimensional.
– Utilizar la calculadora para analizar distribuciones bidimensionales.
– Distribuciones unidimensionales.
CONTENIDOS
– Cálculo de la media, la varianza y la desviación típica en distribuciones unidimensionales.
– Distribuciones bidimensionales.
– Construcción de tablas simples y tablas de doble entrada para organizar los valores
de la distribución bidimensional.
11
– Tipos de diagramas de dispersión.
– Interpretación de diagramas de dispersión.
– Correlación.
– Diferenciación entre correlación lineal y correlación no lineal.
– Dependencia funcional lineal.
– Centro de gravedad.
– Determinación de la covarianza de una distribución bidimensional a partir de los datos
de una tabla de doble entrada.
– Relación entre la covarianza y la correlación.
– Cálculo del coeficiente de correlación lineal.
– Rectas de regresión.
– Determinación de la recta de regresión de Y sobre X y la recta de regresión de Y sobre X.
© VICENS VIVES
– Aplicación de las rectas de regresión para realizar estimaciones de valores de las variables.
– Posición de las rectas de regresión.
– Utilización de la calculadora para realizar cálculos estadísticos.
– Valoración de la estadística para analizar fenómenos o procesos del entorno inmediato.
11-2
11
CRITERIOS DE
EVALUACIÓN
ESTADÍSTICA BIDIMENSIONAL
– Comprobar que el alumno o la alumna diferencia entre distribuciones unidimensionales y bidimensionales.
– Evaluar que si saben calcula la media, la varianza y la desviación típica de una distribución unidimensional.
– Confirmar que los alumnos y las alumnas saben organizar e interpretar valores representados en tablas simples y de doble entrada.
– Comprobar si el alumnado conoce los diferentes tipos de diagramas de dispersión e
interpretar el grado de dependencia de cada uno.
– Evaluar si diferencian entre correlación lineal y correlación no lineal, correlación positiva o negativa y correlación débil o fuerte.
– Verificar que las alumnas y los alumnos saben calcular el centro de gravedad y la covarianza de una distribución bidimensional.
– Evaluar si el alumnado conoce el procedimiento de cálculo del coeficiente de correlación lineal de Pearson.
– Constatar que las alumnas y los alumnos saben obtener las rectas de regresión de
una distribución bidimensional.
– Comprobar que saben aplicar las rectas de regresión a la estimación de valores que
no están en la nube de puntos de la distribución.
– Evaluar los conocimientos, la precisión y el interés adquiridos y mostrados en la realización de estudios estadísticos con distribuciones bidimensionales.
– Verificar que el alumnado sabe utilizar la calculadora para obtener diferentes parámetros estadísticos.
– Competencia en comunicación lingüística: Se trabaja a través de las actividades
en las que el alumnado debe calcular o interpretar parámetros estadísticos y expresar
las conclusiones de forma oral o escrita.
11
– Competencia social y científica: Se incluye en tanto que se suscita la discusión entre el alumnado de las conclusiones que pueden extraerse de los estudios estadísticos realizados.
– Competencia en autonomía e iniciativa: Se desarrolla en las actividades en las que
las alumnas y los alumnos deben aplicar criterios de clasificación de diagramas de
dispersión.
– Competencia para aprender a aprender: Se practica mediante la perseverancia en
la aplicación de procedimientos de cálculo de los parámetros estadísticos bidimensionales introducidos.
© VICENS VIVES
COMPETENCIAS
11-3